Symmetry breaking of QCD in a strong magnetic field

Yoshimasa Hidaka (RIKEN)

Based on Kenji Fukushima, YH, Phys. Rev. Lett 110, 031601 (2013), arXiv:1209.1319 YH, Arata Yamamoto, 1209.0007

Orders of magnitude for magnetic fields

<u>wikipedia</u>

Typical magnet

50G

Neodymium magnet (strongest permanent magnet)

12,500G

Strongest continuous magnetic field produced in a laboratory

450,000G

Magnetars

 $\sim 10^{13} \, \text{G}$

Heavy ion collisions $\sim 10^4 \text{MeV}^2 \sim 10^{17} \text{ G}$

The early Universe (Electroweak transition)

 $\sim 10^{22} \, \mathrm{G}$

Orders of magnitude for magnetic fields

<u>wikipedia</u>

Typical magnet

50G

Neodymium magnet (strongest permanent magnet)

12,500G

Strongest continuous magnetic field produced in a laboratory

450,000G

 $\sim 10^{13} \, \text{G}$

Heavy ion collisions ~10⁴MeV²~10¹⁷ G

The early Universe (Electroweak transition)

 $\sim 10^{22} \, \text{G}$

Strong magnetic field in heavy ion collisions

Strong magnetic field in heavy ion collisions

Magnetic field in heavy ion collisions

Strong magnetic filed is the QCD scale.

Part I: Chiral symmetry breaking

Part II: Fate of Vector meson

Part I:

Magnetic catalysis vs Magnetic Inhibition

Dirac Spectrum m=0

Dirac Spectrum m = 0 \vdots

$$n=4$$

$$n=3$$

$$n=2$$

$$n = 1$$

Gusynin, Miransky, Shovkovy('94), Review: Shovkovy, 1207.5081

Gusynin, Miransky, Shovkovy('94), Review: Shovkovy, 1207.5081

Landau quantization:

1+1 dimension

Gusynin, Miransky, Shovkovy ('94), Review: Shovkovy, 1207.5081

Landau quantization: 1+1 dimension

Particle-hole instability (LLL)

Gusynin, Miransky, Shovkovy('94), Review: Shovkovy, 1207.5081

Landau quantization: 1+1 dimension

Particle-hole instability (LLL)

Spontaneous breaking of chiral symmetry

Model and Lattice Study T=0

Kawati, Konishi, Miyata('83), Klevansky, Lemmer('89), Suganuma, Tatsumi('91), Klimenko('92) Krive, Naftulin('92), Schramm, Muller, Schramm('92)

Buividovich, Chernodub, Luschevskaya, Polikarpov ('09)
Braguta, Buividovich, Kalaydzhyan, Kuznetsov, Polikarpov('10)
D'Elia, Mukherjee, Sanfilippo('10) M. D'Elia and F. Negro('11)
Ilgenfritz, M. Kalinowski, M. Muller-Preussker, B. Petersson, and A. Schreiber('12)

Condensate becomes large.

Model Study T≠0

Johnson, Kundu('08), Fraga, Mizher('09). Mizher, Chernodub, Fraga('10), Fukushima, Ruggieri, Gatto('10), Gatto, Ruggieri('10) ('11), Skokov('11), Fukushima, Pawlowski ('12), Andersen, Tranberg ('12)

Sakai-Sugimoto

PQM

Lattice Study T≠0

D'Elia, Mukherjee, Sanfilippo('10) M. D'Elia and F. Negro('11)

Two coor: Ilgenfritz, M. Kalinowski, M. Muller-Preussker, B. Petersson, and A. Schreiber('12)

T_c increases as B increases.

Recent Lattice result

Decreasing $T_c!$ "Inverse Magnetic Catalysis"

Why does the Inverse Magnetic Catalysis occurs?

Why does the Inverse Magnetic Catalysis occurs?

Our possible answer: Magnetic inhibition

Fukushima, YH ('12)

Mermin, Wargner ('66), Hohenberg ('67), Coleman ('73)

In Quantum 1+1d, classical 2+1d(at finite-T), continuous symmetries cannot be spontaneously broken

Mermin-Wagner's theorem

<u> Mermin, Wargner ('66), Hohenberg ('67), Coleman ('73)</u>

In Quantum 1+1d, classical 2+1d(at finite-*T*), continuous symmetries cannot be spontaneously broken

Quarks:1+1d like because of Landau quantization

However, neutral pions: 3+1d like, so OK?

Model study

Fukushima, YH ('12)

NJL model
$$\mathcal{L} = \bar{\psi}i\not D\psi + \frac{G}{2}\left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\psi)^2\right]$$

$$D \equiv \gamma^{\mu} (\partial_{\mu} + ieA_{\mu})$$

Model study

Fukushima, YH ('12)

NJL model

$$\mathcal{L} = \bar{\psi}i\mathcal{D}\psi + \frac{G}{2}\left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\psi)^2\right]$$

$$\mathcal{D} \equiv \gamma^{\mu} (\partial_{\mu} + ieA_{\mu})$$

Quark contribution (LLL)

$$V_{\rm q}(\sigma) \simeq \frac{eB}{8\pi^2} \left(\Lambda^2 - \sigma^2 \ln \frac{e^{1-\gamma}\Lambda^2}{\sigma^2}\right).$$

Model study

Fukushima, YH ('12)

NJL model

$$\mathcal{L} = \bar{\psi}i\mathcal{D}\psi + \frac{G}{2}\left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\psi)^2\right]$$

$$D \equiv \gamma^{\mu} (\partial_{\mu} + ieA_{\mu})$$

Quark contribution (LLL)

$$V_{\rm q}(\sigma) \simeq \frac{eB}{8\pi^2} \left(\Lambda^2 - \sigma^2 \ln \frac{e^{1-\gamma}\Lambda^2}{\sigma^2}\right).$$

Consider the pion contribution $V_{\pi}(\sigma)$

Dispersion relation of pions

Fukushima, YH ('12)

Velocity of pion for the transverse direction becomes small.

$$E^2 \simeq p_z^2 + v_\perp^2 p_\perp^2$$
 looks like 1+1d

$$v_{\perp}^2 \sim rac{\sigma^2}{eB}$$
 for $p_{\perp}^2 < eB$

Potential

Quark contribution

$$V_{\rm q}(m) \simeq -\frac{eB}{8\pi^2} \sigma^2 \ln \frac{e^{1-\gamma}\Lambda^2}{\sigma^2}$$

Potential

Quark contribution

$$V_{\rm q}(m) \simeq -\frac{eB}{8\pi^2} \sigma^2 \ln \frac{e^{1-\gamma} \Lambda^2}{\sigma^2}$$

Contribution from soft pion: $p_{\perp}^2 < eB\xi$

$$V_{\pi}(m) \simeq \xi \frac{eB}{16\pi^2} \sigma^2 \ln \left[\frac{e^{2-\gamma} \Lambda_{\pi}^2}{\sigma^2} \right]$$

Magnetic Inhibition

Fukushima, YH ('12)

Potential

Quark contribution

$$V_{\rm q}(m) \simeq -\frac{eB}{8\pi^2} \sigma^2 \ln \frac{e^{1-\gamma}\Lambda^2}{\sigma^2}$$

Contribution from soft pion: $p_{\perp}^2 < eB\xi$

$$V_{\pi}(m) \simeq \xi \frac{eB}{16\pi^2} \sigma^2 \ln \left[\frac{e^{2-\gamma} \Lambda_{\pi}^2}{\sigma^2} \right]$$

Magnetic Inhibition

Fukushima, YH ('12)

Need more quantitate analysis.

At finite temperature Vanishing Magnetic Catalysis

Dirac surface is smeared.

Lowest Matsubara mode plays a role of the infrared cutoff:

$$D_q \sim \frac{1}{T^2 + \mathbf{p}^2} \neq 0$$

The infrared singularity vanishes.

At finite temperature Vanishing Magnetic Catalysis Pion fluctuations get stronger.

Consistent with the recent Lattice calculation

Part I: Summary - Magnetic Inhibition

Pion dispersion: $E^2 \simeq p_z^2 + v_\perp^2 p_\perp^2 \quad v_\perp^2 \sim \frac{\sigma^2}{eB}$

Transverse velocity becomes small as B increases.

Part I: Summary - Magnetic Inhibition

Pion dispersion: $E^2 \simeq p_z^2 + v_\perp^2 p_\perp^2 \quad v_\perp^2 \sim \frac{\sigma^2}{eB}$

Transverse velocity becomes small as B increases.

Vacuum: Need more quantitative analysis.

Part I: Summary - Magnetic Inhibition

Pion dispersion: $E^2 \simeq p_z^2 + v_\perp^2 p_\perp^2 \quad v_\perp^2 \sim \frac{\sigma^2}{eB}$

Transverse velocity becomes small as B increases.

Vacuum: Need more quantitative analysis.

Finite temperature:

Fermi-distribution: Magnetic catalysis becomes weaker.

Bose-distribution: Magnetic Inhibition becomes stronger.

Decreasing T_C is consistent with Lattice result.

Part II: Fate of vector meson

Vector meson

$$m_{\rho}^2(B) \approx m_{\rho}^2 - eB$$

$$m_{\rho}^2(B=B_c)=0$$

Vector meson condensation?

Schramm, Muller, and Schramm ('92)

Model analysis:

Extended NJL model

AdS/CFT models

Fermion operator has no zero modes.

Fermion propagator is well defined.

• Fermion determinant is nonnegative.

Schwarz inequality works.

Order parameter is nonsinglet.

Disconnected diagrams do not contribute.

Fermion operator has no zero modes.

Fermion propagator is well defined.

• Fermion determinant is nonnegative.

Schwarz inequality works.

Order parameter is nonsinglet.

Disconnected diagrams do not contribute.

At finite B?

OK • Fermion operator has no zero modes.

Fermion propagator is well defined.

OK • Fermion determinant is nonnegative.

Schwarz inequality works.

OK • Order parameter is nonsinglet.

Disconnected diagrams do not contribute.

At finite B?

OK • Fermion operator has no zero modes.

Fermion propagator is well defined.

OK • Fermion determinant is nonnegative.

Schwarz inequality works.

OK • Order parameter is nonsinglet.

Disconnected diagrams do not contribute.

Lattice study

YH, A. Yamamoto ('12)

Summary II

No vector meson condensation in QCD at finite *B*.

Vector meson mass degreases at small *B*. It increases at large *B*.

QCD inequality is useful tool to constrain effective models.

Finite 7?

Finite µ_B?

Finite μ_1 ?

Finite 7? OK!

Finite µ_B?

Finite μ_1 ?

Finite 7? OK!

Finite μ_B ? NO.

Fermion determinant is complex.

No positivity.

Finite μ_1 ?

Finite 7? OK!

Finite μ_B ? NO.

Fermion determinant is complex.

No positivity.

Finite μ_1 ? NO.

Fermion determinant is nonnegative.

$$\frac{1}{D + m + \gamma_4 \tau_3 \mu_I}$$
 can be zero.

Generalized NJL model?

$$\mathcal{L} = \bar{\psi}(\not D + m)\psi + \frac{1}{2G}V_{\mu}^{2}$$

$$D_{\mu} = \partial_{\mu} - i\tau^{a}V_{\mu}^{a} - iqA_{\mu}^{em}$$

Supersymmetric model?

Generalized NJL model? NO!

$$\mathcal{L} = \bar{\psi}(\not D + m)\psi + \frac{1}{2G}V_{\mu}^{2}$$

$$D_{\mu} = \partial_{\mu} - i\tau^{a}V_{\mu}^{a} - iqA_{\mu}^{em}$$

Vector meson carries isospin, so that Disconnected diagrams also contributes the order parameter.

Supersymmetric model?

Generalized NJL model? NO!

$$\mathcal{L} = \bar{\psi}(\not D + m)\psi + \frac{1}{2G}V_{\mu}^{2}$$

$$D_{\mu} = \partial_{\mu} - i\tau^{a}V_{\mu}^{a} - iqA_{\mu}^{em}$$

Vector meson carries isospin, so that Disconnected diagrams also contributes the order parameter.

Supersymmetric model? NO! Fermion determinant has no positivity.